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Abstract

Video cameras must produce images at a reasonable frame-rate and with a reasonable depth of field. These

requirements impose fundamental physical limits on the spatial resolution of the image detector. As a result,

current cameras produce videos with a very low resolution. The resolution of videos can be computationally

enhanced by moving the camera and applying super-resolution reconstruction algorithms. However, a moving

camera introduces motion blur, which limits super-resolution quality. We analyze this effect and derive a

theoretical result showing that motion blur has a substantial degrading effect on the performance of super

resolution. The conclusion is, that in order to achieve the highest resolution, motion blur should be avoided.

Motion blur can be minimized by sampling the space-time volume of the video in a specific manner. We have

developed a novel camera, called the ”jitter camera,” that achieves this sampling. By applying an adaptive

super-resolution algorithm to the video produced by the jitter camera, we show that resolution can be notably

enhanced for stationary or slowly moving objects, while it is improved slightly or left unchanged for objects

with fast and complex motions. The end result is a video that has a significantly higher resolution than the

captured one.

Keywords: Sensors; Jitter Camera; Jitter Video; Super Resolution; Motion Blur;
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Figure 1: Conventional video cameras sample the continuous space-time volume at regular time inter-

vals and fixed spatial grid locations as shown in (a). The space-time volume can be sampled differently,

for example, by varying the location of the sampling grid as shown in (b) to increase the resolution of

the video. A moving video only approximates (b) due to motion blur.

1. Why is High-Resolution Video Hard?

Improving the spatial resolution of a video camera is different from doing so with a still camera. Merely

increasing the number of pixels of the detector reduces the amount of light received by each pixel, and hence

increases the noise. With still images, this can be overcome by prolonging the exposure time. In the case of

video, however, the exposure time is limited by the desired frame-rate. The amount of light incident on the

detector can also be increased by widening the aperture, but with a significant reduction of the depth of field.

The spatial resolution of a video detector is therefore limited by the noise level of the detector, the frame-rate

(temporal resolution) and the required depth of field1. Our purpose is to make a judicious use of a given

detector, that will allow a substantial increase of the video resolution by a resolution-enhancement algorithm.

Figure 1 shows acontinuousspace-time video volume. A slice of this volume at a given time instance

corresponds to the image appearing on the image plane of the camera at this time. This volume is sampled

both spatially and temporally, where each pixel integrates light over time and space. Conventional video

cameras sample the volume in a simple way, as shown in Figure 1(a), with a regular 2D grid of pixels

integrating over regular temporal intervals and at fixed spatial locations. An alternative sampling of the space-

time volume is shown in Figure 1(b). The 2D grid of pixels integrates over the same temporal intervals, but

at different spatial locations. Given a 2D image detector, how should we sample the space-time volume to

1The optical transfer function of the lens also imposes a limit on resolution. In this paper we ignore this limit as it is several

orders of magnitudes above the current resolution of video.
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obtain the highest spatial resolution2?

There is a large body of work on resolution enhancement by varying spatial sampling, commonly known

as super-resolution reconstruction [4, 5, 7, 9, 13, 17]. Super-resolution algorithms typically assume that a set

of displaced images are given as input. With a video camera, this can be achieved by moving the camera

while capturing the video. However, the camera’s motion introduces motion blur. This is a key point in this

paper: in order to use super-resolution with a conventional video camera, the camera must move, but when

the camera moves, it introduces motion blur which reduces resolution.

It is well known that an accurate estimation of the motion blur parameters is non-trivial, and requires strong

assumptions about the camera motion during integration [2,13,15,19]. In this paper, we show thateven when

an accurate estimate of the motion blur parameters is available, motion blur has a significant influence on

the super-resolution result. We derive atheoretical lower bound, indicating that the expected performance of

anysuper-resolution reconstruction algorithm deteriorates as a function of the motion blur magnitude. The

conclusion is that, in order to achieve the highest resolution, motion blur should beavoided.

To achieve this, we propose the “jitter camera,” a novel video camera that samples the space-time volume at

different locations without introducing motion blur. This is done by instantaneously shifting the detector (e.g.

CCD) between temporal integration periods, rather than continuously moving the entire video camera during

the integration periods. We have built a jitter camera, and developed an adaptive super-resolution algorithm to

handle complex scenes containing multiple moving objects. By applying the algorithm to the video produced

by the jitter camera, we show that resolution can be enhanced significantly for stationary or slowly moving

objects, while it is improved slightly or left unchanged for objects with fast and complex motions. The end

result is a video that has higher resolution than the captured one.

2. How Bad is Motion Blur for Super-resolution?

The influence of motion blur on super resolution is well understood when all input images undergo the same

motion blur [1, 10]. It becomes more complex when the input images undergodifferentmotion blurs, and

details that appear blurred in one image, appear sharp in another image. We address the influence of motion

blur for any combination of blur orientations.

2Increasing the temporal resolution [18] is not addressed in this paper.
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Figure 2: We measure the super-resolution “hardness” by the volume of plausible high-resolution so-

lutions [1]. The volume of solutions is proportional tos(A)n2
wheren2 is the high resolution image size.

The graphs show the value ofs(A) as a function of the length of the motion-blur trajectories{‖lj‖}3
j=0.

We show a large number of graphs computed for different configurations of blur orientations. The

thick graph (blue line) is the lower bound ofs(A), for any combination of motion blur orientations. In

all shown configurations, the motion blur has a significant influence ons(A) and hence on the volume

of solutions. The increase in the volume of solutions can explain the increase in reconstruction error in

super-resolution shown in Figure 3.

Super-resolution algorithms estimate the high resolution image by modeling and inverting the imaging pro-

cess. Analyzing the influence of motion blur requires a definition for super-resolution “hardness” or the

“invertibility” of the imaging process. We use a linear model for the imaging process [1, 7, 9, 13], where the

intensity of a pixel in the input image is presented as a linear combination of the intensities in the unknown

high resolution image:

~y = A~x + ~z, (1)

where~x is a vectorization of the unknown discrete high resolution image,~y is a vectorization of all the input

images, and the imaging matrixA encapsulates the camera displacements, blur and decimation [7]. The

random variable~z represents the uncertainty in the measurements due to noise, quantization error and model

inaccuracies.
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Baker and Kanade [1] addressed the invertibility of the imaging process in a noise-free scenario, where~z

represents the quantization error. In this case, each quantized input pixel defines two inequality constraints

on the super-resolution solution. The combination of constraints forms avolume of solutionsthat satisfy all

quantization constraints. Baker and Kanade suggest to use thevolume of solutionsas a measure of uncertainty

in the super resolution solution. Their paper [1] shows the benefits in measuring thevolume of solutionsover

the standard matrix conditioning analysis.

We measure the influence of motion blur by the volume of solutions. To keep the analysis simple, the

following assumptions are made. First, the motion blur in each input image is induced by a constant velocity

motion. Different input images may have different motion blur orientations. Second, the optical blur is shift-

invariant. Third, the input images are related geometrically by a 2D translation. Fourth, the number of input

pixels equals the number of output pixels. Under the last assumption, the dimensionalityn2 of ~x equals the

dimensionality of~y. Since the uncertainty due to quantization is ann2-dimensional unit cube, the volume of

solutions for a given imaging matrixA can be computed from the absolute value of its determinant

vol(A) =

∣∣∣∣ 1

|A|

∣∣∣∣ . (2)

In Appendix A, we derive a simplified expression for|A| as a function of the imaging parameters. This allows

for an efficient computation ofvol(A), as well as a derivation of a lower bound onvol(A) as a function of the

extent of motion blur.

Since the volume of solutionsvol(A) depends on the image size which isn2, we define in Appendix A

(equation 8) a functions(A) such that:

vol(A) ∝ s(A)n2

.

s(A) has two desirable properties for analyzing the influence of motion blur. First, it is independent of the

camera’s optical transfer function and the detector’s integration function, and normalized to one when there

is no motion blur and the camera displacements are optimal (Appendix B). Second,vol(A) is exponential in

the image size whereass(A) is normalized to account for the image size.

Figure 2 showss(A) as a function of the lengths of the motion blur trajectories. Specifically, let~lj be a vector

describing the motion blur trajectory for thej-th input image: During integration, the projected image moves

at a constant velocity from−
~lj
2

to
~lj
2
. Each graph in figure 2 shows the value ofs(A) as a function of the length
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Ground truth image

Super-resolution output with no motion blur

Super-resolution output with 3.5 pixels motion blur
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Figure 3:The effect of motion blur on super-resolution with a known simulated motion blur. (a) The

top image is the original ground-truth image. The middle image is the super-resolution result for 4

simulated input images with no motion blur. This image is almost identical to the ground truth image.

The bottom image is a super-resolution result for 4 simulated input images with motion blur of 3.5

pixels. Two images with horizontal blur and two with vertical blur were used. The algorithm used the

known simulated motion blur kernels and the known displacements. The degradation in the super-

resolution result due to motion blur is clearly visible. (b) The graph shows the grey levelRMS error in

the super-resolution image as a function of motion blur trajectory length.
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Figure 4: A jitter video camera shifts the sampling grid accurately and instantaneously. This can be

achieved using micro-actuators, which are both fast and accurate. The actuator can shift the detector

as shown in (a), or it can be used to operate a simple optical device, such as the tilted glass plate shown

in (b), in order to optically move the image with respect to the static detector.

of the four motion blur trajectories{‖~lj‖}3
j=0. The different graphs correspond to different configurations of

blur orientations in four input images. The graphs were computed for optimal camera displacements (see

Appendix B) and magnification factor 2.

It can be seen that inall selected motion blur configurationss(A) ∝ vol(A)
1

n2 increases as a function of

the length of the motion blur trajectories{‖~lj‖}. The thick blue line is the lower bound ofs(A), whose

derivation can be found in Appendix A. This bound is for any configuration of blur orientations and any

camera displacements.

The findings above confirm that, at least for our assumptions,any motion blur is bad for super-resolutionand

the larger the motion blur, the larger the volume of solutions.

Figure 3(a) shows super-resolution results of simulations with and without motion blur. Motion blur as small

as 3.5 pixels degrades the super-resolution result, such that some of the letters are unreadable. Figure 3(b)

presents the RMS error in the reconstructed super-resolution image as a function of the extent of the motion

blur. It can be seen that the RMS error increases as a function of the motion blur magnitude. This effect is

consistent with the theoretical observations made above.

3. Jitter Video: Sampling without Motion Blur

Our analysis showed that sampling with minimal motion blur is important for super-resolution. Little can be

done to prevent motion blur when the camera is moving3 or when objects in the scene are moving. Therefore,

3Small camera shakes can be eliminated byoptical lens stabilization systems, which stabilize the image before it is integrated.
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our main goal is to sample at different spatial locations while avoiding motion blur in static regions of the

image.

The key to avoiding motion blur issynchronousandinstantaneousshifts of the sampling grid between tem-

poral integration periods, rather than a continuous motion during the integration periods. In Appendix B we

show that the volume of solutions can be minimized by properly selecting the grid displacements. For exam-

ple, in the case of four input images, one set of optimal displacements is achieved by shifting the sampling

grid by half a pixel horizontally and vertically. Implementing these abrupt shifts by moving a standard video

camera with a variable magnification factor is non-trivial4. Hence we propose to implement the shifts of the

sampling grid inside the camera.

Figure 4 shows two possible ways to shift the sampling grid instantaneously. Figure 4(a) shows a purely

mechanical design, where the detector (e.g. CCD) is shifted by actuators to change the sampling grid location.

If the actuators are fast and are activatedsynchronouslywith the reading cycle of the detector, then the

acquired image will have no motion blur due to the shift of the detector. Figure 4(b) shows a mechanical-

optical design. A flat thin glass plate is used to shift the image over the detector. An angular change of

a 1mm thick plate by one degree shifts the image by5.8µm, which is of the order of a pixel size. Since

the displacement is very small relative to the focal length, the change of the optical path length results with

negligible effect on the focus (the point spread area is much smaller than the area of a pixel). The

mechanical-optical design shown Figure 4(b) has been used for high-resolution still-imaging, for example by

Pixera [6], where video related issues such as motion blur and dynamic scenes do not arise.

An important point to consider in the design of a jitter camera is the quality of the camera lens. With standard

video cameras, the lens-detector pair is matched to reduce spatial aliasing in the detector. For a given detector,

the matching lens attenuates the spatial frequencies higher than the Nyquist frequency of the detector. For a

jitter camera, higher frequencies are useful since they are exploited in the extraction of the high resolution

video. Hence, the selected lens should match a detector with a higher (the desired) spatial resolution.
4A small uniform image displacement can be approximated by rotating the camera about theX, Y axes. However, the rotation

extent depends on the exact magnification factor of the camera, which is hard to obtain. In addition, due to camera’s mass, abrupt

shifting of the camera is challenging.
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4. The Jitter Camera Prototype

To test our approach, we have built the jitter camera prototype shown in Figure 5. This camera was built using

a standard16mm television lens, a Point-Grey [16] Dragon-Fly board camera, and two Physik Instrumente [8]

micro-actuators. The micro-actuators and the board camera were controlled and synchronized by a Physik

Instrumente Mercury stand-alone controllers (not shown).

The jitter camera is connected to a computer using a standard firewire interface, and therefore it appears to

be a regular firewire camera.

We used in our prototype two DC-motor actuators, which enable a frame-rate of approximately 8 frames per

second. Newly developed piezoelectric based actuators can offer much higher speed than DC-motor based

actuators. Such actuators are already used forcamera shake compensationby Minolta [12], however they are

less convenient for prototyping at this point in time.

The camera operates as follows:

1. At power up the actuators are moved to a fixed home-position.

2. For each sampling position in [(0,0),(0,0.5),(0.5,0.5), (0.5,0] pixels do

• Move the actuators to the next sampling position.

• Bring the actuators to a full stop.

• Send a trigger signal to the camera to initiate frame integration and wait during integration dura-

tion.

• When the frame is ready, the camera sends it to the computer over the Firewire interface.

3. End loop

4. Repeat process from step (2).

To evaluate the accuracy of the jitter mechanism we captured a sequence of images with the jitter camera,

computed the motion between frames to a sub-pixel accuracy [3] and compared the computed motion to the

expected value. The results are shown in Figure 6. The green circles show the expected displacements, and

the red diamonds show the actual displacements over multiple cycles. We can see that the accuracy of the

jitter mechanism was better than0.1 pixel. We can also see that while some error is accumulated along the

path, the camera accurately returns to its zero position, thus preventing drift.
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Lens

Figure 5: The jitter camera prototype shown with its cover open. The mechanical micro-actuators are

used for shifting the board camera. The two actuators and the board camera are synchronized such

that the camera is motionless during integration time.

The resolution of the computed high-resolution video was1280 × 960, which has four times the number of

pixels compared to the resolution of the input video, which was640 × 480. This enhancement upgrades an

NTSC grade camera to an HTDV grade camera while maintaining the depth of field and the frame-rate of

the original camera.

With the recent advances in micro-electric mechanical systems (MEMS), it will hopefully be possible to

embed the jitter mechanism within the detector chip, thus creating a jitter-detector.

5. Adaptive Super-resolution for Dynamic Scenes

Given a video sequence captured by a jitter camera, we would like to compute a high resolution video using

super-resolution. We have chosen iterated-back-projection [9] as the super-resolution algorithm. Iterated-

back-projection was shown in [4] to produce high quality results and is simple to implement for videos

containing complex scenes. The main challenge in our implementation is handling multiple motions and

occlusions. Failing to cope with these problems results in strong artifacts that render the output useless.

To address these problems, we compute the image motion in small blocks, and detect blocks suspected of

having multiple motions. The adaptive super-resolution algorithm maximizes the use of the available data for

each block.
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Figure 6: Accuracy of the jitter mechanism. The detector moves one step at a time along the path shown

by the blue arrows. The green circles show the expected position of exactly half a pixel displacement

and the red diamonds show the actual position over multiple cycles. We can see that the accuracy was

less than tenth of a pixel. We can also see that he jitter mechanism returns very accurately to its zero

position, hence prevents excessive error accumulation over multiple cycles.

5.1 Motion Estimation in the Presence of Aliasing

The estimation of image motion should be robust to outliers, which are mainly caused by occlusions and

multiple motions within a block. To address this problem, we use the Tukey M-estimator error function [11].

The Tukey M-estimator depends on a scale parameterσ, the standard deviation of the gray-scale differences

of correctly-aligned image regions (inlier regions).

Due to the under-sampling of the image, gray-scale image differences in the inlier regions aredominated by

aliasing, and are especially significant near sharp image edges. Hence we approximate the standard deviation

of the gray-scale differencesσ in each block from the standard deviation of the aliasingσa in the block, as

σ =
√

2σa. This approximation neglects the influence of noise, and makes the simplifying assumption that

the aliasing effects in two aligned blocks are statistically uncorrelated. In the following we describe the

approximation for the standard deviation of the aliasing in each blockσa, using results on the statistics of

natural images.

Let f be a high resolution image, blurred and decimated to obtain a low resolution imageg:

g = (f ∗ h) ↓

where∗ denotes convolution and↓ denotes subsampling. Lets be a perfect rect low pass filter. The aliasing
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in g is given by:
(f ∗ h− f ∗ s ∗ h) ↓= f ∗ h ∗ (δ − s) ↓

The band-pass filterh ∗ (δ − s) can hence be used to simulate aliasing. For the motion estimation, we need

to estimateσa, the standard deviation of the response of this filter to blocks of theunknown high resolution

image. We use the response of this filter to the aliased low resolution input images to estimateσa. Let σ0

be the standard deviation of the filter response to an input block. Testing with a large number of images, we

found thatσa can be approximated to be a linear function ofσ0. Similar results for non-aliased images were

shown by Simoncelli [20] for various band-pass filters at different scales. For blocks of size16 × 16 pixels

the linear coefficient was in the range[0.5, 0.7]. In the experiments, we setσa = 0.7σ0 which was sufficient

for our purpose.

5.2 Adaptive Data Selection

We use the scale estimateσ from the previous section to differentiate between blocks with a single motion

and blocks that may have multiple motions and occlusions. A block in which the SSD error exceeds3σ

is excluded from the super-resolution calculation. In order to double the resolution (both horizontally and

vertically) three additional valid blocks are needed for each block in the current frame. Depending on the

timing of the occlusions, these additional blocks could be found in previous frames only, in successive frames

only, both, or not at all. We therefore search for valid blocks in both temporal directions and select the blocks

which are valid and closest in time to the current frame.

In blocks containing a complex motion, it may happen that less than four valid blocks are found within the

temporal search window. In this case, although the super-resolution image is under-constrained, iterated-

back-projection produces reasonable results [4]. Figure 7 shows an example from an outdoor video sequence

containing multiple moving objects. On bottom is a visualization of the number of valid blocks used for each

block in this frame. Blocks where less than four valid blocks were used are darkened.

6. Experiments

We tested resolution enhancement with our jitter camera for both static and dynamic scenes. The input images

were obtained from the raw Bayer-pattern samples using the de-mosaicing algorithm provided by the camera

manufacturer [16]. The images were then transformed to theCIE-Labcolor space, and the super resolution

algorithm [9] was applied to the L-channel only. The low resolution (a,b)-chroma channels were linearly
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Input video frame

Blocks usage map
Figure 7: Adaptation of the super-resolution algorithm to moving objects and occlusions. The image on

top shows one frame from a video sequence of a dynamic scene. The image on bottom is a visualization

of the number of valid blocks, from four frames, used by the algorithm in each block. We darkened

blocks where the algorithm used less than four valid blocks due to occlusions.

interpolated and combined with the high resolution L-channel.

6.1 Resolution Tests

The resolution enhancement was evaluated quantitatively using a standard Kodak test target. The input to

the super-resolution algorithm was four frames from a jitter-camera video sequence. Figure 8 shows angular,

vertical and horizontal test patterns. the aliasing effects are clearly seen in the input images, where the line

separation is not clear even at the lower resolution of 60 lines per inch. In the computed super-resolution

images the spatial resolution is clearly enhanced in all angles and it is possible to resolve separate lines well

above 100 lines per inch.
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Raw video from jitter camera Super-resolution output

Figure 8: Resolution test using a standard Kodak test target. The left column shows angular, vertical

and horizontal resolution test targets that were captured by the jitter camera (one of four input images).

The right column shows the super-resolution results. Note the strong aliasing in the input images and

the clear separation between lines in the super-resolution result images.
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6.2 Color Test

The standard Kodak test target is black and white. In order to check the color performance, we used a test

target consisting of a color image and lines of text of different font sizes. Figures 9(a),(b) show one out of

four different input images taken by the jitter camera and a magnified part of the image. For the input images

we utilized the best color de-mosaicing algorithm the Dragonfly camera had to offer (proprietary ’rigorous’

algorithm). We can see that the input image contains color artifact along edges. Figures 9(c),(d) show the

super-resolution result image and a magnified part respectively. The resolution is clearly enhanced and it is

now possible to read all the text lines that were unreadable in the input images. Moreover, we can see that

the de-mosaicing artifacts have almost completely disappeared, while the colors were preserved. This is due

to the fact that the super resolution was applied only to the intensity channel while the chromaticity channels

were smoothly interpolated.

6.3 Dynamic Video Tests

Several experiments were conducted to test the system’s performance in the presence of moving objects and

occlusions. Figure 10 shows magnified parts of a scene with mostly static objects. These objects, such as

the crossing pedestrians sign in the first row and the no-parking sign in the second row were significantly

enhanced, revealing new details. Figure 11 shows magnified parts of scenes with static and dynamic objects.

One can see that the adaptive super-resolution algorithm has increased the resolution of stationary objects

while preserving or increasing the resolution of moving objects.

7. Conclusions

Super-resolution algorithms can improve spatial resolution. However, their performance depends on various

factors in the camera imaging process. We showed that motion blur causes significant degradation of super-

resolution results, even when the motion blur function is known. The proposed solution is the jitter camera,

a video camera capable of sampling the space-time volume without introducing motion blur. Applying a

super-resolution algorithm to jitter camera video sequences significantly enhances their resolution.

Image detectors are becoming smaller and lighter and thus require very little force to jitter. With recent

advances it may be possible to manufacture jitter cameras with the jitter mechanism embedded inside the

detector chip. Jittering can then be added to regular video cameras as an option that enables a significant

increase of spatial resolution while keeping other factors such as frame-rate unchanged.
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Raw video from jitter camera Super-resolution output

(a) (b) (c) (d)

Figure 9: Resolution test of combined color and text image. Panels (a),(b) show one out of four different

input images taken by the jitter camera together with a magnified part of the image. Note that the last

line of the text, which is only six pixels high, is completely unreadable; also, note the de-mosaicing

artifacts in both the text and the image. Panels (c),(d) show the super-resolution result and a magnified

part of it. The resolution is clearly enhanced and it is now possible to read all the text lines that were

unreadable in the input images. Moreover, we can see that the de-mosaicing artifacts have almost

vanished while the colors were preserved.

Motion blur is only one factor in the imaging process. By considering other factors, novel methods for

sampling the space-time volume can be developed, resulting in further improvements in video resolution. In

this paper, for example, we limited the detector to a regular sampling lattice and to regular temporal sampling.

One interesting direction can be the use of different lattices and different temporal samplings. We therefore

consider the jitter camera to be a first step towards a family of novel camera designs that better sample the

space-time volume to improve not only spatial resolution, but also temporal resolution and spectral resolution.
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Raw video from jitter camera Super-resolution output

(a) (b)

(c) (d)

Figure 10: Jitter camera super-resolution for scenes of mostly stationary objects. The left column

shows the raw video input from the jitter camera and the right column shows the super-resolution

results. The first row shows a static scene. Note the significant resolution enhancement of the pedestrian

on the sign, and the fine texture of the tree branches. The second row shows a scene with few moving

objects. Note the enhancement of the text on the no-parking sign, and some enhancement of the walking

person.
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Raw video from jitter camera Super-resolution output

(a) (b)

(c) (d)

Figure 11: Jitter camera super-resolution for scenes with dynamic and stationary objects. The left col-

umn shows the raw video input from the jitter camera and the right column shows the super-resolution

results. The first row shows a scene with a large stationary object (boat) and a large moving object

(woman’s head). As expected, the resolution enhancement is better for the boat. The second row shows

a particularly dynamic scene with many moving objects. Note the enhancement of the face of the

walking women (center) and the kid on the scooter(left).
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Appendix A. The Influence of Motion Blur on the Volume of Solutions

The imaging process of the multiple input images is modelled by a matrixA:

~y = A~x + ~z. (3)

~x is a vectorization of the unknown discrete high resolution image,~y is a vectorization of all the input

images, and~z is the uncertainty in measurements. A minimal number of input images is assumed, such that

the dimensionality of~y equals to the dimensionality of~x, and matrixA is square.

The volume of solutions corresponding to a square imaging matrixA is computed from the absolute value of

its determinant (equation 2):

vol(A) =

∣∣∣∣ 1

|A|

∣∣∣∣ .
In the following we derive a simplified expression for the determinant of the imaging matrixA, and present

the volume of solutions as a function of the camera displacements, motion blurs, optical transfer function,

and the integration function of the detector.

Let f be then× n high resolution image (corresponding to~x in equation 3), and let{gj}m2−1
j=0 be then

m
× n

m

input images (corresponding to~y). The imaging process is defined in the image domain by:

gj = (f ∗ hj) ↓m +zj, (4)

where∗ denotes convolution,hj encapsulates the sensor displacement and motion blur of the j-th image and

the optical blur and detector integration of the camera.zj represents the quantization error, and↓m denotes

subsampling by a factor ofm. In the frequency domain, letZj, Gj, Hj, F denote the Fourier transforms of

zj,gj,hj, f , respectively. The frequencies of the high resolution image are folded as a result of the subsam-

pling:

Gj(u, v)=Zj(u, v)+
∑

ū∈U,v̄∈V

Rect[−n
2 , n

2 ](ū, v̄)Hj(ū, v̄)F (ū, v̄), (5)

whereU={u + kn
m }∞k=−∞, V ={v + kn

m }∞k=−∞, andRect[−n
2 , n

2 ](ū, v̄) equals1 when[−n
2 ≤ ū, v̄ < n

2 ] and0 otherwise.

This leads to the following result.

Proposition 1 Let A be the matrix of equation 3, corresponding to the imaging process above (Equation 4)

for m = 2 (four input images).
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Defineû = u−sign(u)n
2

, v̂ = v−sign(v)n
2
, then the determinant ofA is given by:|A| =

∏
−n

4
≤u,v< n

4
|Āu,v|,

where:

Āu,v=


H0(u, v) H0(û, v) H0(u, v̂) H0(û, v̂)

H1(u, v) H1(û, v) H1(u, v̂) H1(û, v̂)

H2(u, v) H2(û, v) H2(u, v̂) H2(û, v̂)

H3(u, v) H3(û, v) H3(u, v̂) H3(û, v̂)

 .

Proof: Let Ā be a matrix describing the imaging process in the frequency domain
G0(−n

4
, n

4
)

...

G3(
n
4
− 1, n

4
− 1)

 = Ā


F (−n

2
, n

2
))

...

F (n
2
− 1, n

2
− 1))

+


Z0(−n

4
, n

4
))

...

Z3(
n
4
− 1, n

4
− 1)


From equation 5, in the casem = 2, the frequenciesG0(u, v), . . . , G3(u, v) are given by linear combinations

of only four frequenciesF (ū, v̄), ū ∈ {u, û}, v̄ ∈ {v, v̂} up to the uncertaintyZ:
G0(u, v)

G1(u, v)

G2(u, v)

G3(u, v)

 =


H0(u, v) H0(û, v) H0(u, v̂) H0(û, v̂)

H1(u, v) H1(û, v) H1(u, v̂) H1(û, v̂)

H2(u, v) H2(û, v) H2(u, v̂) H2(û, v̂)

H3(u, v) H3(û, v) H3(u, v̂) H3(û, v̂)




F (u, v)

F (û, v)

F (u, v̂)

F (û, v̂)

+


Z0(u, v)

Z1(u, v)

Z2(u, v)

Z3(u, v)


Hence the matrix̄A is block diagonal up to a permutation, with blocks corresponding toĀu,v, −n

4 ≤ u, v < n
4 .

It follows that|Ā| =
∏

u,v |Āu,v|. Since the Fourier transform preserves the determinant magnitude,|A| =

|Ā| =
∏

u,v |Āu,v|.

To analyze the influence of motion blur, we factor the terms in|Āu,v|:

Hj(a, b) = O(a, b)C(a, b)Mj(a, b)Dj(a, b)

with a ∈ {u, û}, b ∈ {v, v̂}. O(a, b) is the Fourier transform of the optical transfer function,C(a, b) is the

transform of the detector’s integration function,Mj(a, b) is the transform of the motion blur point spread

function, andDj(a, b) is the transform of the sensor displacementsδ(x− xj, y − yj).

Let {~lj}3
j=0 be the vectors describing the motion blur path, so that during integration the projected image

gj moves at a constant velocity from−
~lj
2

to
~lj
2

(measured in the high resolution coordinate system). The
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transform of the motion blur is given by:

Mj(a, b) = sinc(m~lTj ~w) =
sin(m~lTj ~w)

πm~lTj ~w

with ~w = [a, b]T .

Let {xj, yj}3
j=0 be the displacements of the input images{gj}3

j=0, respectively, withx0 = 0, y0 = 0. The

Fourier TransformDj(a, b) of the displacementsδ(x− xj, y − yj) is given by:

Dj(a, b) = e−
2πi(axj+byj)

n = e−
2πi(uxj+vyj)

n e−
2πi((a−u)xj+(b−v)yj)

n

Dj(a, b) is expressed as a product of two terms. The first term is common to all pairs(a, b), and hence can be

factored out of the determinant. Similarly, the termsO(a, b), C(a, b) are common to all images, and can be

factored out of the determinant. It follows that:

|Āuv| = |B̄uv|
∏

0≤j≤3

e−
2πi(uxj+vyj)

n

∏
a∈{u,û}b∈{v,v̂}

O(a, b)C(a, b), (6)

where

B̄uv=


M0(u, v) M0(û, v) M0(u, v̂) M0(û, v̂)

M1(u, v) M1(û, v)e−iπs(u)x1 M1(u, v̂)e−iπs(v)y1 M1(û, v̂)e−iπ(s(u)x1+s(v)y1)

M2(u, v) M2(û, v)e−iπs(u)x2 M2(u, v̂)e−iπs(v)y2 M2(û, v̂)e−iπ(s(u)x2+s(v)y2)

M3(u, v) M3(û, v)e−iπs(u)x3 M3(u, v̂)e−iπs(v)y3 M3(û, v̂)e−iπ(s(u)x3+s(v)y3)

 , (7)

ands(u) is an abbreviation for the sign functions(u) = sign(u).

The influence of motion blur on the volume of solutions is therefore expressed in the matricesB̄uv. Since the

volume of solutionsvol(A) =
∣∣∣ 1
|A|

∣∣∣ depends on the image size, we define

s(A) =

∣∣∣∣∣∣
(∏

u,v

|B̄uv|

)− 1
n2

∣∣∣∣∣∣ , (8)

so that, according to proposition 1 and equation 6,

vol(A) =

∣∣∣∣∣∣
∏

−n
4
≤u,v< n

4

|Āu,v|

∣∣∣∣∣∣
−1

∝

∣∣∣∣∣∣
(∏

u,v

|B̄uv|

)−1
∣∣∣∣∣∣ = s(A)n2

. (9)

To conclude,s(A) is a relative measure for the volume of solutions that is independent of the optical blur

and detector’s integration function, and is normalized to account for the image size. The generalization of
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the above results for an arbitrary integer magnification factorm is straightforward, and is omitted in order to

simplify notations.

The lower bound fors(A) was derived using the following inequality for ak × k matrixP [14]:

|P | ≤
(
‖P‖2

F

k

) k
2

, (10)

with ‖·‖F as the Frobenius norm. In order to bounds(A) we define a block-diagonal matrix̄B of sizen2×n2

with B̄(mu−m+j, mv−m+k)=B̄uv(j, k). Using inequality 10 on equation 8:

s(A) =
∣∣∣|B̄|− 1

n2

∣∣∣ ≤ (‖B̄‖2
F

n2

)− 1
2

. (11)

The matrixB̄ hasm2n2 non-zero values, each of the formeixsinc(m~lTj ~wk) for somex. The Frobenius norm

of B̄ is hence

‖B̄‖2
F =

m2−1∑
j=0

∑
~w∈C×C

sinc2(m~lTj ~w), (12)

with C = {−1
2

+ k
n
}n−1

k=0 . As n goes to infinity, the sums are replaced by integrals:

lim
n→∞

1
n2
|B̄‖2

F =
m2−1∑
j=0

∫
~w∈[− 1

2 , 1
2 ]×[− 1

2 , 1
2 ]

sinc2(m~lTj ~w). (13)

The integrals were solved using a symbolic math software. For a given line magnitude‖~lj‖, the maximal

values of the integrals are obtained when~lj is oriented by 45 degrees. The lower bound, appearing in Figure 2,

is therefore the value of equation 11 using equation 13 for a 45 degrees oriented blur~l =
[√

2
2

,
√

2
2

]T
and for

a magnification factorm = 2:

s(A) ≤

(
4

∫
~w∈[− 1

2
, 1
2 ]×[− 1

2
, 1
2 ]

sinc2(m~lTj ~w)

)− 1
2

Appendix B. Optimal Spatial Displacements

We show that when there is no motion blur (or the motion blur is common to all images), the four grid

displacements{(0, 0) (1, 0) (0, 1) (1, 1)} (in the high resolution coordinate system) are optimal for super res-

olution in terms of the volume of solutions. A similar result was shown in [10] measuring the super resolution

quality using perturbation theory.

Proposition 2 Consider the imaging process as defined in equation 4. Assume the filters{hk}3
k=0 have the

same spatial blur, yet different displacements{xk, yk}3
k=0, i.e. hk = h ∗ δ (x− xk, y − yk) for some filterh.
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Thenvol(A) (equation 2) is minimal for displacements{(0, 0) (1, 0) (0, 1) (1, 1)} in the coordinate system of

the high resolution image.

Proof: Let H be the Fourier transform ofh. From Proposition 1 and equations 6,7, it is sufficient to prove

the maximality of|B̂u,v| for all frequencies(u, v). In this case, since the images share the same spatial blur,

the motion blur can be folded intoH, and equation 7 simplifies to:

B̂u,v =


1 1 1 1

1 e−iπs(u)x1 e−iπs(v)y1 e−iπ(s(u)x1+s(v)y1)

1 e−iπs(u)x2 e−iπs(v)y2 e−iπ(s(u)x2+s(v)y2)

1 e−iπs(u)x3 e−iπs(v)y3 e−iπ(s(u)x3+s(v)y3)

 .

The rows ofB̂u,v have the same norm for all assignments of{(xk, yk)}. Hence, the determinant is maximized

when the rows are orthogonal. The rows are orthogonal if and only if

∀k, l, (1 + eπis(u)(xl−xk) + eπis(v)(yl−yk) + eπis(u)(xl−xk)eπis(v)(yl−yk)) = 0

⇒ ∀k, l, (1 + eπis(u)(xl−xk))(1 + eπis(v)(yl−yk)) = 0

which is satisfied when for everyk, l either |xl − xk| = 1 or |yl − yk| = 1. This condition is satisfied by the

above displacements{(0, 0) (1, 0) (0, 1) (1, 1)}

Note that there are other displacements that maximize|A|, for example(0, 0) (1, 0) (x, 1) (x + 1, 1) for any

x ∈ R.
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